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Abstract
Individuals often express their opinions on social
media platforms like Twitter and Facebook during
public events such as the U.S. Presidential debate
and the Oscar awards ceremony. Gleaning insight-
s from these posts is of importance to analyzing
the impact of the event. In this work, we consider
the problem of identifying the segments and topic-
s of an event that garnered praise or criticism, ac-
cording to aggregated Twitter responses. We pro-
pose a flexible factorization framework, SOCSEN-
T, to learn factors about segments, topics, and sen-
timents. To regulate the learning process, several
constraints based on prior knowledge on sentimen-
t lexicon, sentiment orientations (on a few tweets)
as well as tweets alignments to the event are en-
forced. We implement our approach using simple
update rules to get the optimal solution. We eval-
uate the proposed method both quantitatively and
qualitatively on two large-scale tweet datasets as-
sociated with two events from different domains
to show that it improves significantly over baseline
models.

1 Introduction
Given the ubiquity and immediacy of social media, individ-
uals often express their opinions on Twitter and Facebook,
in particular during live or breaking public events such as
the U.S. Presidential debate and Apple products press con-
ference. While viewers can see opinions one by one when
watching, the collection of these posts provides an oppor-
tunity to understand the overall sentiment of people during
the event. Gleaning insights from those posts is of increas-
ing importance to many businesses. Recent studies have re-
vealed that a massive number of people, news media, com-
panies and political campaigns turn to social media to collect
views about products and political candidates during and after
the event. This guides their choices, decision-making, voting,
and even stock market investments [Bollen et al., 2011].

In this work we are interested in analyzing public events
by automatically characterizing segments and topics of that
event in terms of the aggregate sentiments (positive [+]
v.s. negative [-]) they elicited on Twitter (see Fig. 1).
Classifying the sentiment behind textual content has re-

ceived considerable attention during recent years. A stan-
dard approach would be to manually label comments (e.g.,
tweets) with their sentiment orientation and then apply off-
the-shelf text classification techniques [Pang et al., 2002].
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Figure 1: Problem Setup

However, such a solution is
inapplicable to our problem
due to three reasons. First,
manually annotating the sen-
timent of a vast amoun-
t of tweets is time consum-
ing and error-prone, present-
ing a bottleneck in learning
high quality models. Be-
sides, sentiment is always
conveyed with highly domain-specific contextual cues, and
the idiosyncratic expressions in tweets may rapidly evolve
over time, especially when tweets are posted live in response
to the event. It can cause models to potentially lose perfor-
mance and become stale. Last and most importantly, this
approach is unable to relate aggregated Twitter sentiment to
segments and topics of the event. One may consider enforc-
ing tweets’ correlation with the segment and topics from the
event that occur within fixed time-windows around the tweet-
s’ timestamps [Shamma et al., 2009; O’Connor et al., 2010]
and classify the sentiment based on that. However, as pointed
by our recent work [Hu et al., 2012a], this assumption is often
not valid: a segment of the event can actually be referred to
by tweets at any time irrespective of whether the segment has
already occurred or is occurring currently or will occur later
on.

The weaknesses discussed in the foregoing motivate the
need for a fully automated framework to analyze events vi-
a aggregated twitter sentiment, with (1) little or no manual
labeling of tweet sentiment, (2) ability to align tweets to the
event, and (3) ability to handle the dynamics of tweets. While
such a framework does not exist, the literature does provide
partial solutions. For example, our recent work [Hu et al.,
2012b] provides an effective unsupervised framework called
ET-LDA for aligning tweets and events by jointly modeling
both the tweets and events in a latent topic space. Similarly,
while manual annotation of all tweets is infeasible, it is often
possible to get sentiment labeling for small sets of tweets. Fi-
nally, there also exist domain-independent sentiment lexicons
such as MPQA corpus [Wilson et al., 2009].

We propose a flexible framework, named SOCSENT, for
event analytics via Twitter sentiment that leverages these par-



tial solutions. Specifically, our framework seeks low-rank
representations of the Twitter sentiment and its correlation-
s to the event by factorizing an input tweet-term matrix into
four factors corresponding to tweets-segment, segment-topic,
topic-sentiment and sentiment-words. The ET-LDA approach
can be seen as providing the initial information (“prior knowl-
edge”) on the tweet-segment and segment-topic factors. Sim-
ilarly, the availability of labeled tweets can be used to con-
strain the product of tweet-segment, segment-topic and topic-
sentiment matrices. Finally, the sentiment lexicon is used to
regulate the sentiment-words matrix. We pose this factoriza-
tion as an optimization problem where, in addition to mini-
mizing the reconstruction error, we also require that the fac-
tors respect the prior knowledge to the extent possible. We
derive a set of multiplicative update rules that efficiently pro-
duce this factorization, and provide empirical comparisons
with several competing methodologies on two real dataset-
s, covering one recent U.S. presidential candidates debate
in 2012 and one press conference. We examine the results
both quantitatively and qualitatively to demonstrate that our
method improves significantly over baseline approaches.

2 Related Work
Sentiment analysis has achieved great success in determin-
ing sentiment from underlying text corpora like newspaper
articles [Pang et al., 2002] and product reviews [Hu and Li-
u, 2004]. Various approaches, mostly learning-based, have
been proposed, which include classification using sentiment
lexicons [Wilson et al., 2009], topic sentiment mixture model
[Mei et al., 2007], and nonnegative matrix factorization [Li
et al., 2009]. Recently, there has been increasing interest in
applying sentiment analysis to social media data like tweets
such as [Bollen et al., 2011; O’Connor et al., 2010]. Some
works also consider incorporating external social network in-
formation to improve the classification performance ([Tan et
al., 2011; Hu et al., 2013]).

Our work is also inspired by the research in characterizing
events by the tweets around them. These works include infer-
ring structures of events using Twitter usage patterns [Sham-
ma et al., 2009], exploring events by the classification of
audience types on Twitter [Vieweg et al., 2010], sentimen-
t analysis of tweets to understand the events [Diakopoulos
and Shamma, 2010] and modeling the behavioral patterns be-
tween events and tweets [Hu et al., 2012a].

The focus of the above work is mostly classifying senti-
ments of document sources or processing the tweets around
the event. However, they do not provide insights into how to
characterize the event’s segments and topics through the ag-
gregated Twitter sentiment, which is the main contribution of
this work. Perhaps the closest work to us is [Diakopoulos and
Shamma, 2010]. However, it depends on completely manual
coding (via Amazon Mechanical Turk) to determine the sen-
timent. In contrast, we provide a fully automated and princi-
pled solution which can be used to handle the vast amount of
tweets posted around an event.

3 SocSent Framework
In this section, we first present the basics of our proposed
framework SOCSENT. We then describe how to obtain and
leverage prior knowledge. Table 1 lists the notation used in
this paper. Note that although the primary sentiment we focus

on is binary: positive or negative, our model can be easily
extended to handle multiple types of sentiment.

Table 1: Notation
Notation Size Description

X nt ×N Tweet-Term matrix
G nt × ns Tweet-Segment matrix
T ns ×K Segment-Topic matrix
S K × 2 Topic-Sentiment matrix
F N × 2 Term-Sentiment matrix
G0 nt × ns Prior knowledge on Tweet-Segment
F0 N × 2 Prior knowledge on Term-Sentiment
R0 nt × 2 Prior knowledge on Tweet-Sentiment

3.1 Basic Framework
Let a public event be partitioned into ns sequentially ordered
segments, each of which discusses a particular set of topics.
A segment consists of one or more coherent paragraphs avail-
able from the transcript of the event (we will discuss the seg-
mentation in Section 3.2). There are also nt tweets posted by
the audience in response to the event, contributing to a vocab-
ulary ofN terms. As mentioned earlier, our goal is to identify
segment and topics of the event that gained praise or criti-
cism, according to how people reacted and appreciated them
on Twitter. Accordingly, our basic framework takes those nt
tweets in terms of tweet-vocabulary matrix X as input and
decomposes into four factors that specify soft membership of
tweets and terms in three latent dimensions: segment, topic,
and sentiment. In other words, our basic model tries to solve
the following optimization problem:

minG,S,F

∥∥X−GTSF>
∥∥2
F

s.t. G > 0,T > 0,S > 0,F > 0 (1)
where G ∈ Rnt×ns indicates the assignment of each tweet to
the event segments based on the strength of their topic associ-
ations. That is, the i-th row of G corresponds to the posterior
probability of tweet i referring to each of the ns segments
of the event. Similarly, T ∈ Rns×K indicates the posterior
probability of a segment s belonging to the K topic clusters.
Also, S ∈ RK×2 encodes the sentiment distribution of each
topic k. Finally, F ∈ RN×2 represents the binary sentiment
for each term in the vocabulary of tweets. Note that the non-
negativity makes the factorized factors easy to interpret.

As a result of this factorization, we can readily determine
whether people appreciate the segments or topics of the even-
t or dislike them. For example, from topic-sentiment matrix
S we can directly obtain the crowd’s opinion on each topic
covered in the event. In addition, from segment-sentiment
matrix Q (where Q = T × S), we can distill sentiment re-
garding each segment of the event. Finally, it is also feasible
to characterize the sentiment for each tweet, through the new
tweet-sentiment matrix R where R = G×T× S.

Conceptually, our basic matrix factorization framework is
similar to the probabilistic latent semantic indexing (PLSI)
model [Hofmann, 1999] and the non-negative matrix Tri-
factorization model (NMTF) [Ding et al., 2006]. In PLSI and
NMTF, X is viewed as the joint distribution between word-
s and documents, which is factorized into three components:
W is the word class-conditional probability, D is the docu-
ment class-conditional probability and S is the class probabil-
ity distribution. These methods provide a simultaneous solu-
tion for the word and document class conditional distribution.



Our model goes beyond that by providing simultaneous solu-
tions for projecting the rows and the columns of X onto three
latent dimensions.

3.2 Constructing Prior Knowledge
So far, our basic matrix factorization framework provides po-
tential solutions to infer the aggregated Twitter sentiment re-
garding the segment and topics of the event. However, it
largely ignores a lot of prior knowledge on the learned fac-
tors. Previous literature (see [Pang et al., 2002]) shows that
leveraging such knowledge can help regulate the learning pro-
cess and enhance the framework’s performance (which is em-
pirically verified in Section 4). Accordingly, we first show
how to construct three types of prior knowledge: (a) senti-
ment lexicons of terms, (b) sentiment labels of tweets, and
(c) alignment of tweets to the segment of the event. We then
incorporate them into our framework in Section 3.3.

Sentiment Lexicon
Our first prior knowledge is from a sentiment lexicon, which
is publicly available as a part of the MPQA corpus1. It
contains 7,504 representative words that have been human-
labeled as expressing positive or negative sentiment. In total,
there are 2,721 positive (e.g., “awesome") and 4,783 negative
(e.g., “sad") unique terms. It should be noted, that this list
was constructed without any specific domain in mind; this is
further motivation for using training examples and unlabeled
data to learn domain specific connotations. To overcome the
irregular English usage and out-of-vocabulary words in Twit-
ter, we apply a lexicon normalization technique [Han and
Baldwin, 2011] for the terms in our sentiment lexicon. This
involves detecting ill-formed words and generates correction
candidates based on morphophonemic similarity. As a re-
sult, “happppppppppy" is seen as a correct variant of “happy"
thus sharing the same sentiment. We use those candidates
to expand the original lexicon, making it adaptive to Twitter-
related linguistic styles. Besides, we also add popular abbre-
viations and acronyms on Twitter such as “smh" (shake my
head, negative) and “lol" (positive) to the lexicon. Eventual-
ly, we have 5,267 positive and 8,701 negative unique terms
in the lexicon. We encode it in a term-sentiment matrix F0,
where F0(i, 1) = 1 if the a word i has positive sentiment, and
F0(i, 2) = 1 for negative sentiment.

Sentiment Label of Tweets
In addition to the lexicon, our second prior knowledge comes
from human effort. We ask people to label the sentiment for
a few tweets (e.g., less than 1000) for the purposes of cap-
turing some domain-specific connotations, which later leads
to a more domain-adapted model. The partial labels on doc-
uments can be described using a tweet-sentiment matrix R0

where R0(i, 1) = 1 if the tweet expresses positive sentimen-
t, and R0(i, 2) = 1 for negative sentiment. One can use
soft sentiment labeling for tweets, though our experiments
are conducted with hard assignments.

Alignment of Tweets to the Event Segments
Our last prior knowledge focuses on the alignment between
the event and the tweets which were posted in response to
it. Like the sentiment label of tweets, this prior also tries

1http://mpqa.cs.pitt.edu/

making the model more domain-specific. To overcome the
inherent drawbacks of the fixed time-window approach, we
apply the ET-LDA model from our previous work [Hu et al.,
2012b]. ET-LDA is a hierarchical Bayesian model based on
Latent Dirichlet Allocation (LDA) [Blei et al., 2003]. It aims
to model: (1) the event’s topics and their evolution (even-
t segmentation), as well as (2) the associated tweets’ topics
and the crowd’s tweeting behaviors. The model has two ma-
jor components with each capturing one perspective of the
goals. Both parts have the LDA-like model, and are con-
nected by the link which captures the topical influences from
the event on its Twitter feeds. In practice, ET-LDA takes an
event’s transcript and all the event-related tweets and then
concurrently partitions the speech into a number of homo-
geneous segments and aligns each tweet to event segments
based on the strength of their topical associations. We encode
the alignment results in a tweet-segment matrix G0 where
its rows represent nt tweets and its columns represent ns
segments of the event. As the content of G0 is the posteri-
or probability of a tweet referring to the segments, we have∑

1≤j≤ns
G0(i, j) = 1 for each tweet i.

3.3 Incorporating Prior Knowledge into Our
Framework

After defining and constructing the three types of prior
knowledge, we can incorporate them into our basic factoriza-
tion framework as supervision (see Eq. 2). We later demon-
strate in Section 4 that such supervision provides better reg-
ularization to the learned factors and significantly enhances
the model’s performance.

minF,T,G J =
∥∥∥X−GTSF>

∥∥∥2
F

+αTr
(
(F− F0)

>Λ(F− F0)
)

+βTr
(
(GTS−R0)

>Θ(GTS−R0)
)

+γTr
(
(G−G0)

>Γ(G−G0)
)

s.t. F > 0,T > 0,G > 0,S > 0 (2)

where α > 0, β > 0, and γ > 0 are parameters which de-
termine the extent to which we enforce F ≈ F0, G ≈ G0

and the multiplication G×T× S ≈ R0, respectively. Λ ∈
RN×N , Θ ∈ Rnt×nt and Γ ∈ Rnt×nt are diagonal matrices,
indicating the entries of F0, G0 and R0 that correspond to la-
beled entities. The squared loss terms ensure that the solution
for F, G, T, and S, in the otherwise unsupervised learning
problem, be close to the prior knowledge F0, G0 and R0.

It is worth noting the benefit of coupling G, T, and S in
Eq. 2. One may consider applying regularization to each of
them. However, this will add additional computational cost
during the model inference since the model gets more com-
plex. In contrast, the supervision from R0 on the joint of G,
T, and S can achieve the equivalent enforcement (while G is
individually constrained).

The above model is generic and it allows flexibility. For
example, in some cases, our prior knowledge on F0 is not
very accurate and we use smaller α so that the final results are
not dependent on F very much. In addition, the introduction
of G0 and R0 allows us to incorporate partial knowledge on
tweet polarity and assignment information.



3.4 Model Inference
To infer the solutions for factors G, T, S, F in the framework,
we first rewrite Eq. 2 as:

J =Tr
(
X>X− 2X>GTSF>FS>T>G>GTSF>

)
+ αTr

(
F>ΛF− 2F>ΛF0 + F>

0 ΛF0

)
+ βTr

(
S>T>G>ΘGTS− 2S>T>G>ΘR0 + R>

0 ΘR0

)
+ γTr

(
G>ΓG− 2G>ΓG0 + G>

0 ΓG0

)
(3)

The coupling between G, T, S, F makes it difficult to
find optimal solutions for all factors simultaneously. In this
work, we adopt an alternative optimization scheme [Ding et
al., 2006] for Eq. 3, under which we update G, T, S, F
alternatingly with the following multiplicative update rules.

First, for the tweets-segment matrix G, we have:

Gij ←Gij

√√√√ [
XFS>T> + βΘR0S>T> + γΓG0

]
ij

[GTSF>FS>T> + βΘGTSS>T> + γΓG]ij
(4)

Next, for the tweets-segment matrix T, we have:

Tij ←Tij

√√√√ [
βG>ΘR0S> + G>XFS>]

ij[
G>GTSF>FS> + βG>ΘGTSS>

]
ij

(5)

In addition, for the tweets-segment matrix S, we have:

Sij ←Stij

√
[T>G>XF]ij

[T>G>GTSF>F + T>G>ΘGTS]ij
(6)

Last, for the tweets-segment matrix F, we have:

Fij ←Fij

√
[X>GTS + αΛF0]ij

[FS>T>G>GTS + αΛF]ij
(7)

Our learning algorithm consists of an iterative procedure
using the above four rules until convergence. The outline of
the specific steps is shown below.

Algorithm 1: Factorization with Prior Knowledge
input : α, β, γ
output: G, T, S, F

1 Initialize G > 0,T > 0,S > 0,F > 0
2 while Algorithm Not Converges do
3 Update G with Eq.(4) while fixing T,S,F
4 Update T with Eq.(5) while fixing G,S,F
5 Update S with Eq.(7) while fixing G,T,F
6 Update F with Eq.(6) while fixing G,T,S
7 end

Computational complexity The tweet-term matrix X is
typically very sparse with z � nt×N non-zero entries. Also,
K and ns are typically also much smaller than nt and N .
By using sparse matrix multiplications and avoiding dense
intermediate matrices, the updates can be very efficiently and
easily implemented. In particular, updating G, T, S and F
each takesO(C2(nt+ns+N)+Cz) time per iteration which
scales linearly with the dimensions and density of the data
matrix. C is a constant. Empirically, the number of iterations
before practical convergence is usually very small (less than
350). Thus, our approach can scale to large datasets.

3.5 Algorithm Correctness and Convergence
The correctness and convergence of Algorithm 1 can be guar-
anteed by the following two theorems.
Theorem 1. The limiting solutions of the updating rules
Eq.(4), Eq.(5), Eq.(7), Eq.(6) satisfy the Karush–Kuhn–
Tucker (KKT)[Nocedal and Wright, 2000] conditions for
minimizing J in Eq.(3) under the nonnegativity constraints.
Proof. We prove the theorem for updating F here, all others
can be proved in the same way. The Lagrangian for F is

L =J − ΓS>

=
∥∥∥X−GTSF>

∥∥∥2
F
+ αTr

(
(F− F0)

>Λ(F− F0)
)

−ΨF> + C (8)

where the Lagrangian multipliers Ψij enforce the nonnega-
tivity constraint on Fij , and we use C to represent the terms
irrelevant to F. The gradient of L with respect to F is

∂J
∂F

= 2
(
FS>T>G>GTS + αΛF

)
−2
(
X>GTS + αΛF0

)
−Ψ

From the complementary slackness condition, we can obtain(
2
(
FS>T>G>GTS + αΛF

)
−2
(
X>GTS + αΛF0

))
ij

Fij = ΛijFij = 0 (9)

This is the fixed point equation that the solution of Gs must
satisfy at convergence. Actually, for Eq.(7), we have the fol-
lowing condition at convergence

Fij = Fij

√
[X>GTS + αΛF0]ij

[FS>T>G>GTS + αΛF]ij
(10)

which is equivalent to(
2
(
FS>T>G>GTS + αΛF

)
−2
(
X>GTS + αΛF0

))
ij

F2
ij = 0 (11)

Eq. (11) is identical to Eq. (9). Both equations require that at
least one of the two factors is equal to zero. The first factor
in both equations are identical. For the second factor Fij or
F2

ij if Fij = 0 then F2
ij = 0, and vice versa. Thus if Eq. (9)

holds, Eq. (11) also holds and vice versa. �
Theorem 2.. The updating rules Eq.(4), Eq.(5), Eq.(6), E-
q.(7) will finally converge to a stationary point.
This theorem can be proved with the auxiliary function
method as in [Li et al., 2009]. Due to the space limit, we
omit the proof details here.

4 Experiments
In this section, we examine the effectiveness of our proposed
framework SOCSENT against other baselines. Three senti-
ment classification tasks are undertaken on: 1) event seg-
ments, 2) event topics, and 3) tweets sentiment. We also eval-
uate the robustness of our framework with respect to various
sizes of training data and different combinations of the prior
knowledge.



Datasets and Experimental Setup
We use two large scale tweet datasets associated with two
events from different domains: (1) the first U.S. Presiden-
tial debate on Oct 3, 2012 and (2) President Obama’s Mid-
dle East speech on May 19, 2011. The first tweet dataset
consists of 181,568 tweets tagged with “#DenverDebate"
and the second dataset consists of 25,921 tweets tagged with
“#MEspeech". Both datasets were crawled via the Twitter
API using these two hashtags. In the rest of this paper, we
use the hashtags to refer to these events. We obtained the
transcripts of both events from the New York Times, where
DenverDebate has 258 paragraphs and MESpeech has 73
paragraphs. Preprocessing operations, such as stemming and
stopwords elimination, are applied to both tweets and tran-
scripts. Furthermore, we split both tweet datasets into a 80-20
training and test sets.

For ET-LDA, we use the implementation from [Hu et al.,
2012b]. Its parameters are set using the same procedure de-
scribed in [Hu et al., 2012b]. Coarse parameter tuning for our
framework SOCSENT was also performed. We varied α, β
and γ and chose the combination which minimizes the recon-
struction error in our training set. As a result, we set α = 2.8,
β = 1.5, γ = 1.15. All experimental results in this section
are averaged over 20 independent runs.
Establishing Ground Truth: To quantitatively evaluate the
performance of our framework, we need the ground truth of
the sentiment for event segments, event topics and tweets. At
first, we asked 14 graduate students in our school (but not af-
filiated with our project or group) to manually label the sen-
timent (i.e., positive or negative) of 1,500 randomly sampled
tweets for each dataset. We then applied ET-LDA model to
segment two events and establish the alignment between the
labeled tweets and the event segments. So for each segment,
we label its sentiment according to the majority aggregated
Twitter sentiment that correlated to it. For example, if 60 out
of 100 tweets that refer to segment S are positive, then S is
considered to have received positive sentiment since people
showed their appreciation for it. In addition, the top-5 top-
ics of S (these top topics were also learned by ET-LDA) are
also labeled as having positive sentiment. We aggregate this
sentiment across all the event segments and assign the major-
ity sentiment to each topic of the event. Finally, we obtained
35 segments of DenverDebate, where 20 segments were
labeled as negative. Also, 62% labeled tweets and 12 out
of 20 topics were negative. For MEspeech, we have 6 of
9 segments, 13 out of 20 topics, and 72% tweets marked as
negative. Such negativity on Twitter is not surprising, it actu-
ally conforms to the findings in [Diakopoulos and Shamma,
2010].

Baselines
To better understand the performance of SOCSENT, we im-
plemented some competitive baseline approaches:

• LexRatio: This method [Wilson et al., 2009] counts the
ratio of sentiment words from OpinionFinder subjectiv-
ity lexicon2 in a tweet to determine its sentiment orien-
tation. Due to its unsupervised setting, we ignore the
tweets which do not contain any sentiment words.

2http://mpqa.cs.pitt.edu/opinionfinder/

• MinCuts: This method [Pang and Lee, 2004] utilizes
contextual information via the minimum-cut framework
to improve polarity-classification accuracy. We used
MinCuts package in LingPipe3.
• MFLK: This is a supervised matrix factorization method

which decomposes an input term-document matrix into
document-sentiment and sentiment-terms matrices. Su-
pervision from a sentiment lexicon is enforced [Li et al.,
2009]. We implemented it with our Twitter lexicon.

Classification of Sentiment of the Event Segment
We first study the performance of SOCSENT on classifying
the segments’ sentiment for the two events via aggregated
Twitter responses against the baseline methods. Note these
baselines are inherently unable to relate their Twitter senti-
ment classification results to the event segments. To remedy
this, we take a two-step approach. First, we split the whole
event into several time windows (10-min. in our experimen-
t). Then, we enforce the segments’ sentiment to be correlated
with the inferred tweet sentiment that occur within the time-
windows around the tweets’s timestamps. Figure 2 presents
the classification results where accuracy is measured based on
the manually labeled ground truth. It is clear that SOCSEN-
T can effectively utilize the partially available knowledge on
tweet/event alignment from ET-LDA to improve the quality
of sentiment classification in both events. In particular, it im-
proves other approaches in the range of 7.3% to 18.8%.
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Figure 2: Classification of Sentiment of the Event Segment.

Classification of Sentiment of the Event Topics
Next, we study sentiment classification of the topics covered
in the event. The results are shown in Figure 3. Similar to the
last task, we again use time window approach to correlate the
event topics with the sentiment of tweets. Not surprisingly,
SOCSENT improves the three baselines with a range of 6.5%
to 17.3% for both datasets.
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Figure 3: Classification of Sentiment of the Event Topics.

Classifying the Sentiment of the Tweets
In the third experiment, we evaluate the prediction accuracy
of Twitter sentiment. Figure 4 illustrates the results for tweets
posted in response to DenverDebate and MEspeech. As

3http://alias-i.com/lingpipe/



we can see, SOCSENT greatly outperforms other baselines
on both datasets. In fact, it achieves the largest performance
improvement margin (compared to results in Figure 2 and
3). We believe this is because SOCSENT adopts the direc-
t supervision from the pre-labeled tweet sentiment. We al-
so observe that all the methods have better performance on
DenverDebate than on MEspeech (see Figure 2, 3 and
4). This is mainly because DenverDebate attracted a sig-
nificant larger number of tweets than MEspeech. Therefore,
the DenverDebate dataset is likely to be less sparse in the
sense that more words from the sentiment lexicon can also be
found in the training set. As a result, the effect of sentiment
lexicon is fully utilized thus producing better results than on
MEspeech.
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Figure 4: Classification of Sentiment of the Tweets.

Varying Training Data Size
In Table 2, we show the performance of classifying segments’
sentiment using various methods with respect to different size
of training data. Note that LexRatio is an unsupervised ap-
proach so its performance is unchanged in this experiment.
It is clear that the other three methods achieve better per-
formance when more training data is supplied. Besides, on
both DenverDebate and MEspeech datasets, we find that
SOCSENT is more stable over other methods with various
sizes of training data from 10% to 100%. In other words,
SOCSENT does not show dramatic changes when the size of
the training data changes. This demonstrates that our pro-
posed method is robust to training data sizes.

Table 2: Classification accuracy on Segment’s sentiment vs.
Training data sizes. Notations: LR is for LexRatio, MC is for
MinCuts, MF for MFLK, and SS, for our method SOCSENT .

DenverDebate
T10%(gain) T25%(gain) T50%(gain) T100%(gain)

LR 0.524 0.524 0.524 0.524
MC 0.538 (+2.7%) 0.563 (+7.4%) 0.568 (+8.4%) 0.574 (+9.5%)
MF 0.532 (+1.5%) 0.536 (+2.3%) 0.558 (+6.5%) 0.562 (+7.3%)
SS 0.588 (+12.2%) 0.595 (+13.5%) 0.613 (+17.0%) 0.621 (+18.5%)

MESpeech
T10%(gain) T25%(gain) T50%(gain) T100%(gain)

LR 0.487 0.487 0.487 0.487
MC 0.502 (+3.1%) 0.520 (+6.8%) 0.521 (+6.9%) 0.523 (+7.4%)
MF 0.488 (0.2%) 0.504 (+3.5%) 0.509 (+4.5%) 0.511 (+4.9%)
SS 0.541 (+11.1%) 0.549 (+12.7%) 0.558 (+14.6%) 0.561 (+15.2%)

Effectiveness of Prior Knowledge
Finally, given the available three types of prior knowledge
– sentiment lexicon, tweet labels and tweet/event alignmen-
t by ET-LDA, it is interesting to explore their impact on the
performance of SOCSENT. Table 3 presents the evaluation
results on two datasets, where we judge SOCSENT on three
aforementioned classification tasks with respect to different
combinations of its prior knowledge. For each combination,

we come up with separate update rules which have the simi-
lar form as Eq. 4-Eq. 6. Besides, we find optimal parameters
using the same procedure described above in the setup of ex-
periment. Several insights are gained here: First, using sin-
gle type of prior knowledge is less effective than combining
them. Especially, combining all three types of prior knowl-
edge leads to the most significant improvement (an average
of 29.8% gain over the baseline N.A on two datasets). Sec-
ond, domain-specific knowledge (tweet labels, event/tweet
alignment) is more effective than domain-independent knowl-
edge (sentiment lexicon) in all three prediction tasks. Last,
domain-specific knowledge is particulary helpful in its cor-
responding task. For example, having tweet/event alignment
(denoted as G0 in Table 3) achieves more accurate results in
classifying the sentiment of the event segments than without
having it. For example, combinations with this prior knowl-
edge such as F0 + G0 or R0 + G0 have better performance
than F0 +R0 with 6.5% and 8.3% improvement, respective-
ly. These insights demonstrate the advantage of SOCSENT’s
ability to seamlessly incorporate prior knowledge.

Table 3: Combinations of prior knowledge vs. Accuracy. No-
tations: F0 for sentiment Lexicon, R0 for tweets labels, G0

for prior tweet/event alignment knowledge from ET-LDA. N.A
refers to the basic framework without any constraints.

DenverDebate

Segment (gain) Topics (gain) Tweets (gain)
N.A 0.486 0.502 0.498
F0 0.523 (+7.5%) 0.542 (+7.9%) 0.545 (+9.4%)
R0 0.532 (+9.5%) 0.548 (+9.2%) 0.578(+16.1 %)
G0 0.484 (-0.01%) 0.504 (+0.02%) 0.491 (-1.4 %)
F0+R0 0.572 (+17.7%) 0.564 (+12.4%) 0.735 (+47.8 %)
F0+G0 0.604 (+23.6%) 0.605 (+20.5%) 0.68(+36.5%)
R0+G0 0.612 (+25.7%) 0.612 (+21.9%) 0.687(+37.9%)
F0+R0+G0 0.618 (+27.2%) 0.628 (+25.1%) 0.768 (+54.2 %)

MEspeech

Segment (gain) Topics (gain) Tweets (gain)
N.A 0.472 0.498 0.512
F0 0.493 (+4.4%) 0.503 (+1.1%) 0.557 (+8.7%)
R0 0.502 (+6.3%) 0.512 (+2.8%) 0.566 (+10.5%)
G0 0.467 (-1.1%) 0.494 (-0.8%) 0.515 (+0.5%)
F0+R0 0.542 (+14.8%) 0.552 (+10.2%) 0.606 (+18.3%)
F0+G0 0.568 (+20.3%) 0.578 (+16.0%) 0.632 (+23.4%)
R0+G0 0.578 (+22.4%) 0.588 (+18.1%) 0.642 (+25.3%)
F0+R0+G0 0.588 (+24.5%) 0.598 (+20.1%) 0.652 (+27.3%)

5 Conclusion
In this paper, we have described a flexible factorization
framework, SOCSENT that characterizes the segment and
topics of an event via aggregated Twitter sentiment. Our
model leverages three types of prior knowledge: sentiment
lexicon, manually labeled tweets and tweet/event alignment
from ET-LDA, to regulate the learning process. We evalu-
ated our framework quantitatively and qualitatively through
various tasks. Based on the experimental results, our model
shows significant improvements over the baseline methods.
We believe that our work presents the first step towards un-
derstanding complex interactions between events and social
media feedback and reveals a perspective that is useful for the
extraction of a variety of further dimensions such as polarity
and influence prediction.
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